I am advertising a 3-year fully funded PhD position with start in september 2015 or as soon as possible after that. The student will use functional magnetic imaging (fMRI) in healthy participants and stroke patients to investigate how attention and the ocular sensorimotor signals are coupled and how errors in this coupling can lead to attention disorders such as spatial neglect.

Further details about the project, the supervisor, the environment and the application procedure are below:

The project:
The mind’s eye: the sensorimotor underpinnings of attention

A fundamental question in cognitive science is whether cognition and sensorimotor functions are entirely separate, as if the mind were a computer, or alternatively, whether the body influences the mind. The debate between advocates of the independent and the embodied views has been particularly heated in the discussion about the neural mechanisms of attention.

Attention is the ability to withdraw from some stimuli in order to deal effectively with others. Many of the brain areas that control attention also control eye movements. Is attention merely taking over some of the neural machinery evolved for gaze control, while operating completely independently? Or is attention nothing more than planned and withheld eye movements?

Recent breakthroughs in cognitive neuroscience allow now to design experiments that can answer these questions. I and others have mapped the pathways for the eye position signals in the central nervous system and provided tools to manipulate with these signals in the healthy human brain using transcranial magnetic stimulation (i.e. Balslev and Miall, J Neuroscience, 28:8968-72, 2008). There are two sources of eye position information: proprioception (the afferent input from the extraocular muscles) and corollary discharge (the copy of the oculomotor command). My work has shown that all interventions that change the oculoproprioceptive signal change the allocation of attention in space. This finding is crucial because it shows for the first time that a sensorimotor signal may have a specific function in attention (Balslev et al, J Neuroscience, 33:18311-8, 2013).

The aim of this research is to investigate how attention and the ocular sensorimotor input are coupled and how error in this coupling can cause spatial neglect.

The supervisor

I am an MD/PhD with 7 years postdoctoral experience, relocated to the UK one year ago to take up my first academic position. Personal fellowships from the Danish Medical Research Councils and the EU throughout the entire postdoctoral period have allowed me not only to develop an independent research agenda, but also to learn research methods in cognitive neuroscience from key experts. A list of my publications is here.

My lab has access to state-of-art equipment for transcranial magnetic stimulation (MagPro X100), eye tracking (EyeLink II) and functional magnetic resonance imaging (Siemens Trio, at the Clinical Research Centre, Ninewells Hospital Dundee). I would be happy to train the student to use these methods in healthy and patient populations. The oculomotor command and the re-afferent input for the eye muscles are fundamental building blocks in the neural representations that support movement, attention or object recognition. The goal is to understand how the brain represents space and how a breakdown in these representations in neurological patients can lead to disabilities such as optic ataxia, spatial neglect or simultanagnosia.

You can read more about my research here

The environment

The School of Psychology and Neuroscience at St Andrews has a strong Vision group using a variety of techniques (including psychophysics, eye movements, EEG, fMRI, TMS, neuropsychology and computational modelling) to study the human visual system. Ours is a highly multidisciplinary group, with members trained in biology, neuroscience, medicine, psychology, maths, physics and engineering. Potential students from these and related disciplines are welcome.

Funding

The PhD studentship covers tuition fees for UK/EU residents and provides a stipend of £13863/year. Candidates from overseas will have to find additional sources of support to cover the difference in the tuition fees
The project is funded via an award to Dr Daniela Balslev from the Wellcome Institutional Strategic Support Fund at the University of St Andrews.

Application procedure

Please send to daniela.balslev@st-andrews.ac.uk the following documents:
1. CV. This should include your personal details including your country of residence with a history of your education and employment to date.
2. Letter of motivation (half a page)
3. Two letters of reference
4. Copies of academic transcripts and degree certificates
5. Candidates who are not UK/EU residents will have to provide a statement about how they expect to cover the difference in the tuition fees (please see information about Funding above).

Applications will be accepted until the position is filled. Previous experience with Matlab, eye tracking, neuropsychology or functional magnetic resonance is not a prerequisite, but highly desirable.